AI-Assisted Combinational Targeted Drug Discovery in Ovarian Cancer

Nidhi Singh, Ale Wolf-Yadlin, Ishan Mohanty, Ty Carlson, Mark R. Anderson

Pattern Computer, Inc., www.patterncomputer.com

MOTIVATION

- o Combinational targeted therapy is a promising strategy that has revolutionized the landscape of cancer treatment; this approach can enhance efficacy, reduce drug resistance, and decrease the chances of tumor growth and metastasis compared to singleagents thus, vielding clinical benefit.1
- Given the limited resources and factorial number of combinations that can be envisioned, strategies to reduce the search space and the number of experiments are needed.
- Pattern[™] has developed a unique, proprietary, and innovative computational platform, 'Pattern Discovery Engine[™](PDE)' that can extract patterns of relevance (genes and gene associations) within highdimensional genomics data; these patterns can be translated into testable hypothesis (combination/ repurposed drugs).

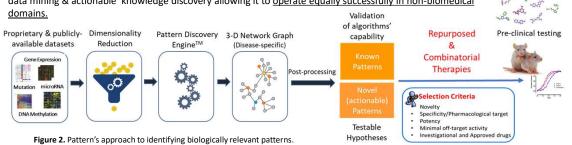
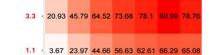

Target Lead Lead ADMET Evaluation Discovery Optimization Evaluation	
Traditional Drug Discovery 4-9 years	
Compound Compound	Celi-based Assay Animal Research Phase 1-3 Clinical Trials
Identification Acquisition	Preclinical Studies 1-3 years Pharmaceutical Development 2-7 years
Combination/Repurposed Drugs 1-2 years	

Figure 1. Pattern's AI-Assisted Drug Discovery - making the process faster, cheaper & with lower failure rates.

- This study highlights ongoing work in indications of high unmet need such as High-grade Serous Ovarian Cancer (HGSOC)² where using our drug discovery platform we were able to uncover unique synergistic drug pairs with distinct underlying joint mechanisms of action that elicit anti-proliferative activity against ovarian cancer growth in vitro.
- o Given that cocktails of well-known drugs in clinics were established through a lengthy, empirical, trial and error process, our approach of identifying 'combinations by design' can:
 - · Fast-track the unbiased discovery of novel drug combinations
 - Rank-order the most effective drug combination for biological evaluation
 - Streamline the process of translational science via drug repurposing

METHODS


- Data-driven & hypotheses-free. We analyze high-dimensional data with no preconceived notions. This shift elevates the data to a primary function of revealing complex structures to yield novel and often surprising correlations.
- o Drug Discovery with faster, cheaper, and with lower failure rates. PDE can predict, within weeks, gene association networks relevant to a disease, allowing identification of actionable higher-order gene interactions. This enables us to pursue a commercial pathway from discovery to clinical trials within 12-24 months when focusing on repurposed or combination therapies.
- Flexible. Our discovery platform can be easily integrated into a comprehensive and flexible framework for data mining & actionable knowledge discovery allowing it to operate equally successfully in non-biomedical domains. Validation

RESULTS

Table 1. The 5 potentially synergistic drug combinations against HGSOC o Using PDE and publicly available identified using PDE. Synergy scores are generated utilizing the Bliss model contained in the SynergyFinder web-based tool

Drug Combination	Synergy Score	Maximum Inhibition (%)	Most Synergistic Area Score	
PCI-150302	15.55	91.26	38.00	
PCI-150303	14.26	97.17	24.72	
PCI-150304	14.08	97.55	24.16	
PCI-150301	13.64	95.08	23.33	
PCI-150305	15.80	80.99	31.06	

Drug B (µM)	0.4		14.45	17.5	38.29	52.35	58.68	63.51	65.06	inhibition (%)
	0.1		1.39	0.26	18.23	35.35	43.48	48.69	52.61	60 40 20
	0.04	•	-7.84	-9.2	4.88	20.59	31.84	37.22	43.4	0
	0.01	•	-10.17	-14.77	-3.38	11.36	21.93	29.85	36.28	
	0.0		0	-8.94	-0.55	11.29	19.66	24.3	30.54	
		ĺ	0.0	0.01	0.04	0.1 Drug /	<mark>0.4</mark> Α (μΜ	1.1)	3.3	

- HGSOC gene expression data, we identified several potentially synergistic combination drugs (in silico discoveries).
- The combination candidates were subjected to *in vitro* cell viability assay to determine the combination interaction of submitted compounds in a custom panel of 3 human ovarian tumor cell lines - OV90. OVCAR3 and CaoV3.
- Among the limited number of potential candidates submitted, five combinations demonstrated significant synergy in killing cancer growth, Table 1.
- A representative dose response matrix for one of the successful combinations is shown (right)
- Further validation through targeted in vivo studies is currently underway.
- Figure 3. PCI-150305: Dose-response matrix (inhibition), left. *Redacted drugs represent proprietary Pattern[™] content.

CONCLUSIONS

- Using Pattern's drug discovery platform, in combination with genomics dataset, we identified and validated 5 novel potentially synergistic combination therapies against one of the most prevalent and lethal form of Ovarian cancer.
- The systematic and computationally exhaustive search for repurposed/combination drug discovery that our engine achieves may overcome the many challenges in identifying novel, effective drug combination therapies and getting approval for their clinical usage.
- Our platform tools can be easily directed toward drug discovery efforts in the search for equally promising treatment candidates for other complex and intractable disease types.

REFERENCES

- 1. Jin H, Wang L, Bernards R. Rational combinations of targeted cancer therapies: background, advances and challenges. Nat Rev Drug Discov. 2023 Mar;22(3):213-234.
- 2. Dion L., Carton I., Jaillard S., et al. (2020). The landscape and therapeutic implications of molecular profiles in epithelial ovarian cancer. J. Clin. Med. 9 (7), 2239.

1900

-ad

