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Objective: To obtain complete DNA sequences of adenoviral (AdV) D8 genome from patients with
conjunctivitis and determine the relation of sequence variation to clinical outcomes.

Design: This study is a post hoc analysis of banked conjunctival swab samples from the BAYnovation Study,
a previously conducted, randomized controlled clinical trial for AdV conjunctivitis.

Participants: Ninety-six patients with AdV D8-positive conjunctivitis who received placebo treatment in the
BAYnovation Study were included in the study.

Methods: DNA from conjunctival swabs was purified and subjected to whole-genome viral DNA sequencing.
Adenovirus D8 variants were identified and correlated with clinical outcomes, including 2 machine learning
methods.

Main Outcome Measures: Viral DNA sequence and development of subepithelial infiltrates (SEIs) were the
main outcome measures.

Results: From initial sequencing of 80 AdV D8-positive samples, full adenoviral genome reconstructions
were obtained for 71. A total of 630 single-nucleotide variants were identified, including 156 missense mutations.
Sequence clustering revealed 3 previously unappreciated viral clades within the AdV D8 type. The likelihood of
SEI development differed significantly between clades, ranging from 83% for Clade 1 to 46% for Clade 3.
Genome-wide analysis of viral single-nucleotide polymorphisms failed to identify single-gene determinants of
outcome. Two machine learning models were independently trained to predict clinical outcome using poly-
morphic sequences. Both machine learning models correctly predicted development of SEI outcomes in a newly
sequenced validation set of 16 cases (P ¼ 1.5 � 10�5). Prediction was dependent on ensemble groups of
polymorphisms across multiple genes.

Conclusions: Adenovirus D8 has � 3 prevalent molecular substrains, which differ in propensity to result in
SEIs. Development of SEIs can be accurately predicted from knowledge of full viral sequence. These results
suggest that development of SEIs in AdV D8 conjunctivitis is largely attributable to pathologic viral sequence
variants within the D8 type and establishes machine learning paradigms as a powerful technique for under-
standing viral pathogenicity. Ophthalmology Science 2022;2:100166 ª 2022 Published by Elsevier Inc. on behalf of
the American Academy of Ophthalmology. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

Supplemental material available at www.ophthalmologyscience.org.
Conjunctivitis is among the most common infectious condi-
tions worldwide.1,2 In the United States alone, > 6 million
cases of conjunctivitis are diagnosed annually with an
attributed associated annual cost for diagnosis, treatment,
and lost work of over $800 million.1,3 Viruses are the most
frequent cause of conjunctivitis. Human adenoviruses
(AdV) are the most prevalent, accounting for approximately
75% of cases.2,4e6 The most severe form of conjunctivitis
is epidemic keratoconjunctivitis (EKC), a highly infectious
form that frequently results in community outbreaks in health
care settings, schools, and daycare. Epidemic
ª 2022 Published by Elsevier Inc. on behalf of the American Academy of
Ophthalmology. This is an open access article under the CC BY-NC-ND li-
cense (http://creativecommons.org/licenses/by-nc-nd/4.0/).
keratoconjunctivitis may have a prolonged and severe course
lasting from weeks to months and may lead to permanently
decreased visual acuity.7e10

Subepithelial infiltrates (SEIs) are among the most
serious sequela of AdV keratoconjunctivitis, with reported
frequency ranging from 33% to 80% of patients with acute
AdV conjunctivitis.2,11,12 Histopathologically, SEIs are
composed of lymphocytes, histiocytes, and fibroblasts
accompanied by disruption of collagen fibers in the
Bowman’s layer of the cornea.13 Subepithelial infiltrates
are thought to be due to viral replication in corneal cells
1https://doi.org/10.1016/j.xops.2022.100166
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and subsequent immunologic host reaction.14e16 In addition
to causing clinical symptoms including persistent photo-
phobia and foreign-body sensation, these opacities may
cause scarring of the cornea, optical aberrations, induced
astigmatism, and a decrease in visual acuity.17e20

Traditionally, AdV were classified based on serum
neutralization and hemagglutination assays into 6 species
(A-F). More recently, classification has been based on ge-
nomics, with 7 species (A-G) and over 100 types identified
based largely on variations in the immunogenic hexon, fiber,
and penton base viral surface proteins.21 Certain types of the
B, D, and E species are capable of causing conjunctivitis,
including types B3, E4, D8, D37, and D64 (previously
D19).10,22 The D species is most commonly associated
with EKC, suggesting that virally encoded factors at least
partially determine the severity of conjunctivitis.6,14,23e25

However, the degree to which viral sequence variants
determine clinical outcomes in adenoviral conjunctivitis has
not been established to date.

Methods

Participants

This study was HIPAA-compliant, approved by institutional board
review (US: Goodwin IRB [Cincinnati, OH]; India: Drug
Controller General [DCGI] with local site ethics committees; Sri
Lanka: Scientific and Ethical Review, Faculty of Medicine, Uni-
versity of Kelaniya, Colombo, Sri Lanka; Brazil: National Ethics
Committee in Research [CONEP] plus local site ethic committees),
and conducted in accord with the Declaration of Helsinki. The
BAYnovation clinical trial was registered at clinicaltrials.gov
(NCT01877694). Informed consent was obtained from all study
subjects. Subjects were included if they were older than 18 years;
had one of the following: recent upper respiratory tract infection,
contact with an infected person, or a recent visit to an eye care
provider; had at least 2 of 9 clinical signs indicative of conjunc-
tivitis; had onset < 3 days prior to enrollment; and had a positive
point-of-service AdV antigen screening test (Adeno Plus, Rapid
Pathogen Screening, Inc, Saratosa, FL). Study subjects were
recruited from centers in Brazil, Sri Lanka, and India.

Sequencing and Identification of Viral Clades

The samples from the placebo arm of the NVC-422 BAYnovation
drug trial with quantitative polymerase chain reaction (PCR)
quantitation of > 1 � 107 copies/swab had DNA extracted and
were sequenced using Illumina MiSeq. The resulting data were
annotated, filtered, and aligned using the Scalable Metagenomics
Alignment Research Tool-based pipeline.26 Of the samples that
yielded sufficient sequence for full-genome reconstruction, de
novo reconstruction was accomplished using SPAdes 3.11.1.27

Variant calling of the scaffolds was performed using Annovar to
construct a sequence of nucleotides for each sample that
described the genotype at all the genomic locations where any
single-nucleotide variant was reported within the dataset with
respect to reference sequence.28 Maximum likelihood phylogenetic
trees were constructed from the scaffolds using Clustal U for
multiseq alignments and phylip for the phylogenetic analysis to
determine monophyletic groups (clades).29 In order to validate
the findings of these clades, pairwise comparison of the single-
nucleotide polymorphisms (SNPs) were completed. Principal
component analysis (PCA) was performed, and the results from the
clustering algorithms were compared in order to validate the
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clades. Subjects were only included for analysis if they were from
the placebo arm and had clade data available.

Clinical Predictors of Subepithelial Infiltrates

Visual acuity was determined using ETDRS vision charts.
Clinical signs that were collected and analyzed include the

presence of lymphadenopathy, lid edema, lid erythema, bulbar
conjunctival injection, palpebral conjunctival hyperemia,
conjunctival discharge and lid crusting, presence of abnormal tear
meniscus, corneal fluorescein staining, tear breakup time, and the
presence of SEIs. Clinical symptoms included in the analysis were
blurry vision, foreign-body sensation, tearing, itching, burning, and
photophobia. To determine a clinical signs and clinical symptoms
score, variables such as lymphadenopathy, tear breakup time,
presence of SEIs, and blurry vision were scored as a binary 0 (not
present) or 1 (present); all other variables were scored as 0 (absent),
1 (mild), 2 (moderate), or 3 (severe) based on study-defined
criteria.

The primary outcome was to determine the presence or absence
of an association between collected baseline factors and distinct
monophyletic groups (clades). As a secondary outcome, an asso-
ciation between demographic factors, vision, clinical symptoms,
and clinical signs and the development of SEIs was examined. Chi-
squared and analysis of variance testing were performed to deter-
mine significance. Variables were considered statistically signifi-
cant if P < 0.05.

Machine Learning Methods

Ensemble of Extra Trees. Initial testing of several methods
including XGBoost, glm, and random forest classifiers identified a
stacked ensemble of extra tree classifiers as well suited for this
application. An extra trees model utilizing all sequence variants
(coding and noncoding) was used to predict clade of the sample
and serves as a meta-classifier gate in the stacked ensemble. A
separate first level layer of ensembles of extra tree classifiers was
built within each clade and was trained using only missense mu-
tations for SEI outcomes.

Pattern Discovery Engine Analysis. The data were analyzed
by Pattern Computer using its Pattern Discovery Engine� meth-
odology. Briefly, all SNP information was binarized, with 0 rep-
resenting the reference allele and 1 the alternate. The data were
then processed using its discovery platform leveraging the topol-
ogy of directed acyclic graphs to discover hidden patterns within
large-scale datasets without introducing bias into the data. The
extracted patterns, including the most important SNPs and SNP
interactions with respect to the different models’ output, were used
to reduce the dimensionality of the genomic space and create
mathematically interpretable and testable predictive models for
viral country, clade, and severity of eye infection.

Results

The BAYnovation trial was a randomized, masked
controlled clinical trial of 500 patients with adenoviral
keratoconjunctivitis from 4 countries on 3 continents to
assess the efficacy of the non-specific antiviral compound
auriclosene (NV-422) in improving clinical outcomes.
While the agent did not meet the clinical endpoint, the
placebo arm of this trial provides important natural history
data.11 In the course of this study, bilateral conjunctival
swabs containing virus were obtained from 500
symptomatic subjects on days 1, 3, 8, 11, and 18, along

http://clinicaltrials.gov


Figure 1. Adenovirus (AdV) 8 polymorphisms among 71 subjects with viral conjunctivitis. The top panel shows genetic map of AdVD8, with the middle
panel showing sequencing depth and location of polymorphisms of a representative viral sequence compared with canonical sequence (KT340071.1) and
location of all 630 single nucleotide polymorphisms (SNPs) identified in the training dataset of 71 samples in this study. The lower panel shows clustering of
the 630 SNPs, identifying 3 potential clades of virus.
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with prespecified clinical data. We analyzed the subset of
samples typed as AdV D8 by direct PCR from the
placebo arm of this trial, using shotgun metagenomic
sequencing and viral genome reconstruction. Two hundred
sixty-two of the 500 unique patients were PCR-positive
for AdV D8, of which 127 were from the placebo arm of
the trial. We randomly selected 80 of these with viral loads
> 1 � 107/ml for sequencing and successfully reconstructed
the viral genome from 71 of these samples. In total, 47 of
these 71 subjects (66%) developed SEIs during follow-up.
Clinical features of subjects with and without SEIs are
shown in Table S1.

Sequencing Identifies 3 Subtype Clades of AdV
D8 with Differing Disease Severity

Metagenomic sequences from the 71 samples were gener-
ated from the Illumina platform and were annotated, filtered,
and aligned using a Scalable Metagenomics Alignment
Research Tool-based pipeline.30 Of these, 43 samples
were from India, 10 samples were from Sri Lanka, and 18
samples from Brazil (we have previously shown that AdV
D8 was a rare cause of conjunctivitis in the United States
for this cohort).11 De novo reconstruction of these 71
sample genomes was performed using SPAdes 3.11.1.26 In
order to obtain high-quality scaffolds with minimal frag-
mentation given the large variance in genomic coverage, k-
mer sizing was iterated until the average k-mer coverage
was below 40. This resulted in an average k-mer coverage of
the single largest scaffold node from each sample of 38.6x,
with an average length of 34.5 kb, corresponding to w99%
breadth of coverage of the 34.9 kb reference AdV-D8
genome (GenBank reference KT340071.1). The average
coverage of the largest scaffold node from each sample was
330x, corresponding to an average genomic coverage of
326x (Fig 1, top). The remaining 1% of genomic sequence
consisted of boundary inverted terminal repeats that were
not fully resolved.

Variant calling of the scaffolds was performed using
Annovar.27 We found 630 SNPs (approximately 2% of the
viral genome) among the 71 samples. Notably, the average
per-sample pairwise distance relative to the reference
genome was 62 SNPS, with 50 of these mapping to exonic
polymorphisms. No nonsense mutations were found in the
dataset. If only protein-level missense mutations are consid-
ered, the total variation within the dataset decreased to 156
SNPs across the 71 samples. Combined with the observation
that almost 80% of the average pairwise distance between
samples mapped to missense mutations, it appears there is
significant clustering in the distribution of the missense mu-
tations, while the remainder of the variation is more randomly
distributed throughout the genome (Fig 1, bottom).

Maximum likelihood phylogenetic trees were con-
structed from the scaffolds using Clustal U for multiseq
alignments28 and phylip21 for the phylogenetic analysis
(Fig 2A). Three monophyletic groups were identified, one
of which was shared by samples from India and Brazil
(Clade 1, n ¼ 30) and 2 of which arise from
geographically distinct locations in Sri Lanka (Clade 2,
n ¼ 11, 10 of which were from Sri Lanka and one from
India) and India (Clade 3, n ¼ 30). Interestingly, within
sites in India, there was substantial overlap of Clades 1
and 3 with several sites yielding viruses of both clades
(Fig S1), suggesting these variants are in circulation
3



Figure 2. Clustering of Adenovirus D8 sequences. A, Phylip maximum likelihood tree showing geographic distribution of clusters. B, Jaccard nearest
neighbor analysis demonstrating 3 clades of virus. C, Principal component analysis (PCA) of viral sequence demonstrating 3 clades.
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Figure 3. Distribution of subepithelial infiltrates (SEIs) among samples and clades.
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simultaneously in this population. To validate the finding of
3 clades of AdV D8, several independent clustering
methods were employed. Pairwise comparison of the SNP
sets was completed using multiple distance metrics
including overlap coefficient (|X

T
Y|/min(|X|,|Y|)),

Jaccard index (|X
T
Y|/|X

S
Y|), Manhattan (L1), Euclidean

(L2), and Chebyshev (L:N) methods.29,31,32 Group
count, composition, and superstructure remained invariant
with respect to metric by all clustering techniques. K-
means clustering was run on the Jaccard index distance
matrix to identify cluster boundaries and superstructure,
followed by density-based spatial clustering of
applications with noise (DBSCAN) to identify fine
structure of each cluster (Fig 2B).33 Principal component
analysis was performed, and the results from the
clustering algorithms were compared (Fig 2C). Finally,
the cumulative 1D distribution function was used to
compare diversity within and between subtypes. As
expected, intragroup diversity was significantly reduced
relative to intergroup diversity when all samples are
considered, effectively showing a large reduction in the
genomic entropy of each group and verifying structure of
the clusters.

To determine if the identified 3-clade structure was
unique to this dataset or encompassed previously sequenced
AdV8 samples, the 54 AdV-D8 complete genomes present
in the National Center for Biotechnology Information
GenBank (as of January 1, 2021) were retrieved and added
to the dataset. Identical clustering analysis again demon-
strated 3 distinct monophyletic groups. All existing full-
length sequences mapped onto the 3-clade structure (Fig
S2) without outliers. Of note, historical samples were
found in each of the 3 identified clades, and each clade
contained samples originating from � 2 continents.

The demographics and clinical outcomes of subjects
infected with each of the 3 clades were compared
(Table S2). Among 71 samples, there were 30 samples in
clade 1, 11 samples in clade 2, and 30 samples in clade 3.
The mean age of patients was 32.1 years, and 57.5% were
male. Patients with Clade 2 virus tended to be older
(mean age: 40.3 years) than in the other clades, and there
was a trend toward female predominance in the Clade 3
samples. Visual acuity and presenting sign scores were
indistinguishable between clades. Presenting viral load
was similarly not correlated with clade. There was a
statistically significant difference in the total presenting
symptom score between clades, with subjects in Clade 1
presenting with a higher symptom score of 5.13 � 3.53
than 2.36 � 2.62 in Clade 2 subjects and 3.27 � 2.77 in
Clade 3 subjects (P¼0.017). However, after multiple-
comparison adjustment of statistics, none of 15 single pre-
senting signs or symptoms in the composite score were
significantly different between clades. With respect to out-
comes, there were significant differences in the SEI fre-
quency between Clades 1 (83% SEI) and 2 (73% SEI) and
Clade 3 (46% SEI) (P¼0.0061 by Fisher exact test, Fig 3).

Machine Learning Predicts Development of SEIs
From Viral Sequence

We initially tested each of the 156 missense SNPs for pre-
diction of SEI development using viral genome-wide asso-
ciation study (GWAS). No SNP was significantly predictive
of outcomes. Having demonstrated that AdV D8 genomic
variation produces clade-wise differential pathogenicity, we
next sought to determine if a machine learning paradigm
could be utilized to predict development of SEIs given
genomic sequence variation across multiple loci. We
initially utilized an ensemble of extra trees random decision
tree classifier.34e36 A 2-stage paradigm was utilized. First, a
decision tree model utilizing all sequence variants (coding
and noncoding) was used to predict clade of the sample.
5



Figure 4. Machine learning architecture and results. A, Schematic of ensemble of trees model for machine learning. B, Receiver operating characteristic
(ROC) and precision recall on 71 training samples using leave-one-out (LOO) methodology using extra random forest model. AUC ¼ area under the curve;
SEI ¼ subepithelial infiltrate.
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One hundred percent accuracy in assignment relative to
clustering was observed. Second, within each clade, an extra
tree random forest ensemble was trained using only
missense mutations for SEI outcomes (Fig 4). Accuracy was
assessed using multiple iterations with holdout set. After
training, the engineered ensemble of extra random
decision tree classifiers resulted in > 97% accuracy with
6

> 99.5% receiver operator characteristic area under the
curve (AUC) and 99.8% precision-recall (PR) score on
leave-one-out cross-validation of the training set.

To evaluate potential overfitting, a 1000-trial bootstrap
estimate of model performance with randomly permuted
training set SEI outcomes was conducted. When the training
set SEI outcome results were randomly permuted, both



Table 1. Polymorphisms and Linkages Used in Machine Learning Prediction of Outcomes

Prediction Polymorphism Gene
Amino Acid
Substitution Linked Mutations

Clade C24044G L4 Q433E T20418C (L3), T21020C (L3), A22381G (E2A), A23710G (L4),
A24202G (L4), C27475G (E3), C27969T (E3), C29037A (E3),
A29393C (E3)

Clade C28031G E3 Q202E C21209G, G27384A (E3), C27475G (E3), A28457G (E3), A30716G,
G33373A (E4), G34504A

Country G188A Upstream of E1A - C2671T (E1B), C2682T (E1B), T3712C (pIX), T6873C (E2B),
G10209A, C10510A, G13050C (L1), C13486T, C16591T (L2),
C16801T (L1), G18405C (L3), C22963G (L4), C22973T (L4),
C23032T (L4), G24908A (L4), C26536T, T26635G, C30531G,
G30609A, C30841T (L5), G31354A (L5), C33901T (E4), C34315A

Country G4470A pIVa2 L251L
Country T20418C L3 H889H T21020C (L3), A22381G (E2A), A23710G (L4), C24044G (L4),

A24202G (L4), C27475G (E3), C27969T (E3),
C29037A (E3), A29393C (E3)

SEI 1 A3861G Downstream of E1B,
pIVa2, pIX

- G7922A (E2B), A32968T (E4), C33208T (E4), C33236T (E4)

SEI 1 C4866T pIVa2 L116L C8814T (E2B), G9730A (E2B), C10958T (L1), C14645G (L2),
G20199A (L3), C20729T (L3), C21715T (E2A), G25212C, C26751T,
C26766A

SEI 1 C5187T E2B, pIVa2 S1023N, Q12Q G7175A (E2B), C20892T (L3), G28748C (E3)
SEI 1 A8962G E2B F411F
SEI 1 G31042A L5 G94G
SEI 1 G31285A L5 K175K
SEI 1 G34825A Upstream of E4 - A34838C, G34840T, G34841C
SEI 2 C1707G E1B L54V C6163T (E2B), C25946T (L4)
SEI 2 G31589C L5 E277Q
SEI 2 A33281T E4 I5I
SEI 2 T34747C Upstream of E4 -
SEI 3 G197A Upstream of E1A - A1381G (E1A), T7980G (E2B), C25795G (L4)
SEI 3 C2401T E1B C183C
SEI 3 C3630T pIX A69V
SEI 3 G4566T pIVa2 I219I G17362A (L3), T28133A (E3)
SEI 3 C6155T E2B K700K
SEI 3 G10295A Upstream of E2B, L1 -
SEI 3 G26961C E3 L11L
SEI 3 C31928T Downstream of E4, L5 -

Linked polymorphisms occurring within specific genes are denoted in parentheses. All polymorphisms are annotated with respect to reference adenovirus D8
sequence (GenBank KT340071.1). SEI ¼ subepithelial infiltrate.
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accuracy and AUC were indistinguishable from random
choice (E[Acc] ¼ 0.50 � 0.12, E[AUC] ¼ 0.50 � 0.15),
indicating that machine learning identified meaningful
sequence variants in prediction of SEIs rather than poly-
morphisms with chance correlation to SEI outcomes.

To further validate the learning model, 16 previously
unsequenced AdV D8 samples from the placebo arm of the
trial, equally divided from India, Brazil, and Sri Lanka, were
sequenced and genomes reconstructed. Eleven of these 16
samples were associated with development of SEIs. The
extra random forest classifier trained on the previous 71
samples was applied to these new sequences. The machine
learning paradigm successfully predicted the clade of origin
of the samples (16/16 correct assignments with n ¼ 3
possible outcomes, P ¼ 2.32 � 10�8) and correctly pre-
dicted presence or absence of SEIs in all cases (16/16 cor-
rect assignments with n ¼ 2 outcomes, P ¼ 0.000015). A
second machine pattern discovery method (Pattern Discov-
ery Engine� [PDE],37,38 Pattern Computer�, Redmond,
WA) was applied to the same dataset. Following training
of the system on the 71-sample training set, this model
was also able to predict clade of origin and clinical out-
comes correctly in 16/16 samples.

Machine Learning Models Utilize Multiple Linked
Polymorphisms for Prediction of SEIs

Extra random forest ensemble models have low explain-
ability.39 We utilized the PDE methodology to understand the
basis for machine learning prediction of outcomes data. The
discovery engine identifies, weights, and ranks the most
informative covariates within a system and transforms that
information into a model represented by a simple set of
equations. Using this methodology, single equations were
extracted that exactly predict viral country of origin and
clade across the training and test datasets. A parsimonious
set of equations built to predict SEIs across all clades
successfully predicted SEI status for 93% and 100% of the
training and test sets, respectively. Overall, the systems of
equations built by the discovery engine utilized 21 SNPs.
7



Figure 5. Predictive equations for determination of country, clade, and
subepithelial infiltrate (SEI) development. Presence of a specific poly-
morphism (i.e., G31042A) equates to a binary value of 1, and all other
values are 0. Clade is first established through equation (2), followed by
calculation of SEI prediction through equations (3), (4), and (5).
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Two SNPs were required to perfectly distinguish between
clades, and 19 SNPs were used by the discovery engine to
predict SEIs across viral clades (Table 1 and Fig 5). For
clade prediction, the 2 utilized SNPs were perfectly linked
to numerous other SNPs in the dataset (8 additional SNPs
for C2044G and 7 additional SNPs for C28031G). These
SNPs are located in the E2A, E3, E4, L3, and L4 genes.
The 19 polymorphisms that are used in the machine
learning paradigm to predict SEIs are in turn highly linked
to numerous other genes, with polymorphisms used in
clade 1 prediction linked to 17 additional polymorphisms,
polymorphisms for clade 2 prediction linked to 2 additional
SNPs, and clade 3 prediction polymorphisms linked to 5
additional SNPs (Table 1). As these SNPs are highly
linked, it is impossible to attribute pathogenicity to any
specific SNP in the linked group. Thus, information
required to predict outcome is distributed broadly through
the viral genome and represents either tightly linked
polymorphisms across genes or high cooperativity among
multiple genes in determining outcomes.
Discussion

We have found that whole-viral-genome sequencing of a
total of 87 AdV D8 isolats causing adenoviral keratocon-
junctivitis reveals previously unappreciated subtypes of this
8

virus, with 3 well-delineated subtype clades. The finding
that existing AdV D8 full-length sequences, including se-
quences from Europe, North America, and Japan, fall within
the 3-clade structure suggests these are stable viral subtypes
and that their evolution predated this study. It is possible
that the relative geographic segregation of specific types in
this study may be a consequence of specific localized out-
breaks at the time of the study. It is also noteworthy that we
did not see clear evidence of recombination of viral clades,
even though multiple clades were in contemporaneous cir-
culation in India during this study. This suggests that the
linked polymorphisms which define clades (which constitute
19 SNPs in total in 2 linkage groups) may have achieved
stability within each clade.

Risk of SEIs, a serious complication of viral conjuncti-
vitis, varied significantly with clade, strongly indicating that
viral sequence variants influence the likelihood of this
complication. Further analysis of the dataset using 2 inde-
pendent machine learning methods produced models
capable of predicting development of SEIs with > 97%
accuracy including perfect prediction of 16 novel samples,
using solely viral sequence information. Taken together,
these findings add to prior evidence that genetic variants
beyond the hexon gene strongly influence pathogenesis40

and that nearly all risk of SEIs is determined by complex
factors identifiable within the viral sequence.

The concept that sequence variants may influence patho-
genicity has a strong basis in other viruses. This has been best
documented for influenza virus, in which the hemagglutinin
and neuraminidase gene variants are associated with variable
pathogenicity (for example, with H1N1 being the cause of the
1918 pandemic or the H3N2 associated with the 1968 Hong
Kong outbreak).41,42 Previous work in adenoviral
conjunctivitis pathogenicity has linked hexon gene variants
with disease severity. D-species variants (particularly types
8, 37, and 6422) are known to be associated with EKC,
while B- and E-species variants such as B3 and E4 have
been more commonly associated with milder follicular
conjunctivitis or pharyngeal conjunctivitis. Within the D
family, the D8 variant is the most common cause of EKC.
Typing of adenoviruses has historically been based on
immunogenicity, largely dependent on nucleocapsid
proteins, particularly the hexon capsomere (L3) and fiber
(L5) genes. The current study finds that noncapsid
sequence variants appear to contribute to pathogenicity of
this family of viruses.

The use of machine learning in identifying viral sequence
pathogenicity appears to be a powerful approach for identi-
fication of pathogenic strains and associated genetic variants.
The success of this technique in predicting outcomes in the
validation samples demonstrates its power in identifying
pathogenic variants of an infectious pathogen. The finding
that machine learning could predict SEI outcomes without
any knowledge of patient-dependent factors suggests that
much (if not all) of the variation in outcomes in adenoviral
conjunctivitis is driven by virus-specific factors. While a
simple model for this might entail expression of a uniquely
immunogenic protein causing SEIs in certain strains, tradi-
tional viral GWAS analysis, in which each individual SNP
was assessed for contribution to outcome, failed to identify
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any SNPs that were uniquely predictive of SEIs. Only anal-
ysis of the ensemble genome by machine learning identified
the patterns of SNPs associated with disease, suggesting that
SEIs arise from conjoint action of several gene products.

The discovery engine methodology allows for identifi-
cation of the viral features used to drive prediction. Deter-
mination of the clade relied on only 2 linked groups of SNPs
but included linked variants in the E2A, E3, E4, L3, and L4
genes. Interestingly, among the factors identified by this
approach, variants in the penton gene (L2), which codes for
the protein that guides viral internalization, and the L5
capsid fiber gene did not appear to contribute substantially
to clade prediction. However, the L5 gene, which has pre-
viously been shown to determine viral tropism for the
corneal epithelium,43 was among those genes with SNPs
contributing to prediction of SEI for clades 1 and 2. It is
remarkable that prediction of SEIs in the different clades
used different sets of SNPs, with no single gene’s SNPs
required for all 3 models. The high degree of linkage
between polymorphisms used by the machine learning
approaches limits biological hypotheses as to pathogenesis
of SEIs. For instance, the C4866T allele in the pIVa2
gene used in SEI clade 1 prediction is polymorphic with 7
other coding variants in 5 other genes as well as 2
noncoding variants, any one of which could be
biologically relevant. In the absence of recombinants, it is
impossible at present to assign roles for these alleles in
pathogenesis. Individual alleles could be tested through
production of viruses with high- and low-susceptibility al-
leles and subsequent in vitro and animal pathogenicity
testing. For example, previous work has suggested a role for
the E3-14.7 gene in viral pathogenesis via inactivation of
host TNF-alpha,44,45 and similarly, viruses with deleted
E2B-pTP show altered pathogenicity due to attenuated
host immune response.46 It also remains to be determined if
identical or similar polymorphisms in the same genes will
affect outcomes for other conjunctivitis-causing species
and strains such as E4, D37, or D64.

Several caveats apply to the machine learning
approach. First, as noted previously, there are numerous
linked polymorphisms across clades. While the ensemble
of trees approach will weight each polymorphism, it is
possible that only one of the linked sequence changes is
actually the driving outcome, while the others serve as
linkage markers. Indeed, performance was slightly better
on the test set than on the training set, which may be
attributable to divergent outcomes arising from nearly
identical viral variants in the latter. Additionally, the
validation set consisted of 16 subjects taken from the
same clinical protocol as the training set. These cases
may have been in temporal or spatial proximity to each
other, which may limit the range of detected poly-
morphisms. The generalizability of the machine learning
algorithm for prediction remains untested for other pop-
ulations. Despite these provisos, it appears that utilization
of machine learning approaches to analysis of viral vari-
ants and their clinical courses allows for identification of
complex genetic interactions that determine outcome.
Such an approach may be applicable to many other
questions in viral pathogenesis such as determination of
oncogenic potential of human papilloma viruses,47

understanding risks for reactivation of varicella zoster
causing shingles,48 or understanding determinants of
outcomes from SARS-CoV2.49
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