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Introduction 

Decades of research has demonstrated that breast 

cancer is a heterogenous complex of diseases with 

distinct biological features and clinical outcomes. 

Genome-wide association studies (GWAS) have 

successfully identified variants associated with disease 

[1] but of the 46 known drug targets, only one has been 

discovered through GWAS. Indeed, GWAS genes rarely 

constitute actionable intelligence. This is because such 

studies provide only a parts list – they don’t indicate 

how genes work together to effect outcomes. 

 

Disruptive advances in machine learning and 

computing enable fundamentally new types of genetic 

and genomic studies – where we search for important 

aspects of genomic architecture; for pathways, or 

relationships between pathways, rather than individual 

genes. We move beyond lists of parts, we learn how the 

parts assemble into the machine – form and function. 

 

Previously, such studies have been frustrated by the 

“curse of dimensionality” – the fact that searching for 

collections of variants or genes that exhibit signatures 

of interactions requires the exploration of an intractably 

large space. Current methods using statistics to assess 

the effects of pairs of variants requires conducting 

2x1013 tests. With triplets that’s up to 1019, and 

quadruplets would require over 300M hours on largest 

supercomputers in North America. 

 

With new tools, we can search for interactions of any 

form or order at the same computational cost as 

individual variants. We can map response surfaces, and 

use these to understand relationships between, for 

instance, the expression levels of collections of genes 

and clinical outcomes. We are working to improve 

diagnosis and prognosis to develop individualized 

therapy recommendation systems and to identify new 

actionable therapeutic targets. Further, in our learning 

framework, these goals are all interlinked: our learning 

machines are transparent – prognostic panels are not 

black boxes – users can explore the joint effects of 

genetic variants or changes in gene expression. Viewing 

cancer through the lens of genomic landscapes, rather 

than individual genes, variants, or quantitative trait loci 

(QTLs) may help us better understand cancer biology 

and to develop new, more personalized therapeutic 

strategies. 

 

Objective 

Our goal is to identify novel genes and gene interactions 

specific to individual breast cancer subtypes that can 

serve as potential target(s) for developing more effective, 

personalized treatment options for combating breast 

cancer. The extent to which genetic background and 

genomic context is important to oncogenesis has 

remained opaque. We provide a new view of the 

genomic landscape of cancer, and conclude that 

modeling interactions between genes is a valuable step 

toward accurate prognostics and the rational 

development of therapeutic strategies. 

 

Using publicly available gene expression datasets and 

our cutting-edge machine learning tools, we generated: 

(1) novel gene panels that are capable of accurate 

prognosis and subtype identification, and (2) a 

“hypothesis generator” for the identification of higher-

order gene-gene interactions within subtypes. We 

illustrate the power of these approaches in a few case-

studies. Follow-on studies will focus on the validation of 

our findings in pre-clinical models. 

 

 
 

“We have demonstrated the capacity of our algorithms to learn 6th order interactions in a search space 

larger than 1022 at the same computational cost as the identification of individual genes.”  
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Prognostic Gene Panels: 
Subtype & Risk Classification 

The first step to accomplishing our goal was the 

development of better, more accurate and robust 

multivariate prediction models for the identification of 

biomarkers. Our aim is to simultaneously classify 

tumors by their molecular subtypes and also to provide 

accurate identification of patients with low-risk versus 

high-risk disease-states to inform treatment decisions. 

Figure 1 outlines our workflow to design and develop 

predictive classifiers.  

 

Using our feature-selection engine, high-dimensional 

genomic datasets were reduced from around 20,000 

features (genes) to the order of 10s of genes. Multiple 

gene panels were derived using our proprietary 

machine learning tools, which enabled the 

identification of the top-weighted genes that, together, 

reproducibly identify subtype and survival. This was 

followed by retraining the calibration engine with gene 

panels with varying numbers of genes to enhance 

predictive power. The overall accuracy for the calibrated 

model (Pattern BC38) was then evaluated at 

approximately 90%, Fig. 2. We predict that accuracy will 

be further improved by repeated testing of tumor sub-

samples – under a Bayesian model, 99% accuracy is 

obtainable after testing in only biological triplicate.                   

 
 

Figure 2a. The Pattern BC38 gene panel for breast cancer 

subtype and survival classification. The bar next to it shows 

expression levels from low (blue) to high (red). Redacted gene 

references represents proprietary PCI content. 

 

The top 6 genes account for 95.5% of the variability of 

the Pattern BC38, prompting us to study a reduced six-

gene panel, Pattern BC06 shown in Figs. 2 and 3. This 

panel provides adequate classification for both subtype 

and survival with fewer genes in a robust, and cost-

efficient manner.  
     
 

Figure 1. An outline of the approach to design classifying gene panels using biomarker classifier. 
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Figure 2b. A 2D representation of breast cancer subtypes 

generated using t-SNE dimensional reduction technique. 

 

      
Figure 3. The Pattern BC06 gene panel for breast cancer 
subtype and survival classification. Redacted gene references 
represent proprietary PCI content. 
 

Finally, the performance of our panel to assign the 

same tumor to the same subtype was assessed on 

external, independent breast cancer datasets.                     

     

It was found that the simplified gene panel had an 

overall prediction accuracy of ~86% for test samples, 

which we project will obtain >99% accuracy after 

testing in biological quadruplicate.  

 

High-Order Interaction 
Detection 

Using our proprietary algorithms built into our “Pattern 

Discovery EngineTM”, our next step was to attempt to 

map the gene expression architecture that underlies 

disease risk in human-navigable representations. Fig. 4 

provides an outline of how the Pattern Discovery 

EngineTM works.  

Briefly, large genomic datasets are ingested by the 
dimensionality reduction engine that reduces its size to 
the order of 10s of genes. This is followed by feature 
discovery, selection and consolidation to learn high-
order interactions that correspond to testable 
hypotheses at the basis of disease progression. Finally, 
based on their respective statistical scores and generated 
probability cubes, a handful of interactions are selected 
for further biological investigation.  

 
Methods exist for identifying two-way relationships or 

predefined (hypothesis-based) high-order interactions, 

and many “black box” machine learning architectures 

take advantage of complex interactions but extracting 

them for human exploration and hypothesis generation 

          Figure 4. Pattern Discovery EngineTM Workflow. 
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remains a foundational challenge for the field. “Open 

box” procedures, like forward regression, become 

computationally prohibitive for even relatively small 

datasets. This is where our system shines:  

 We have demonstrated the capacity of our 

algorithms to learn 6th order interactions in a 

search space larger than 1022 at the same 

computational cost as the identification of 

individual genes.  

This presents a substantial advantage over existing 

approaches and uniquely places our technologies for 

the discovery of complex, nonlinear interactions 

permitting inquiry into the high-order mechanisms 

underlying functional regulation.  
 

To explore the utility of our engine for pattern 

discovery, we present a three-way gene interaction 

between BUB1, FOXM1 and CHEK1 identified from 

among the high-risk group within the basal subtype of 

breast cancer. We present the architecture of the 

association between these three genes and disease 

prognosis as a “probability cube” for visualization. The 

probability cube describing this gene-gene interaction 

represents the relationship of the expression levels of 

these genes to survival. Here we see that high 

expression of all three genes is indicative of poor 

prognosis (high risk, Fig. 5).  

  
Figure 5. The probability cubes showing relationship between 

expression levels of FOXM1, BUB1 and CHEK1 with respect to 

survival. The blue and red colored areas represent regions of 
low risk (low mortality) and high risk (high mortality) for breast 

cancer of the basal subtype. 

This is further evidenced by the Kaplan-Meier curve that 

shows the collective ability of the three genes to predict 

overall survival with high statistical significance (Cox p = 

0.0022, log rank test; Fig. 6a). We further plotted the 

correlation of BUB1 and CHEK1 as a function of the 

expression levels of FOXM1. Based on Fig. 6b, we 

hypothesized that FOXM1 may act as a regulator of 

CHEK1 and BUB1.             

Figure 6a. The Kaplan-Meier curve demonstrating the ability of 
FOXM1-BUB1-CHEK1 to predict overall survival. 

     
Figure 6b. A plot of correlation between BUB1 and CHEK1 as a 

function of expression levels of FOXM1 – exogenous (high) 
levels of FOXM1 expression are associated with the 

discoordination of CHEK1 and BUB1 expression, which, under 

nominal conditions, are tightly correlated.   

 

To validate our computationally-derived hypothesis, we 

looked into published literature to understand the 

functional relationship between FOXM1, BUB1, and 

CHEK1. The protein-protein interaction network 

generated for the aforementioned genes using the 

online database resource - Search Tool for the Retrieval 

of Interacting Genes (StringDB) [2] - indicates functional 

associations (Fig. 7). Prior literature reveals the 

involvement of FOXM1 in the regulation of the 
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transcription of cell cycle progression genes, that CHEK1 

as an important regulator in the DNA damage response 

pathway [3], and that BUB1 as mitotic checkpoint protein 

with an important role in chromosome segregation [4]. 

In fact, FOXM1 is a direct transcription regulator of both 

CHEK1 [5] and BUB1 [6]. 

 

 
 

Figure 7. Protein interaction network showing putative 

interactions between FOXM1, BUB1 and CHEK1 generated by 

StringDB. 

 

Conclusions 

Due to heterogeneity in breast cancer, identifying 

subtype-specific gene interactions associated with 

survival will be useful in providing guidance for 

improved meta-dimensional prognostic biomarkers and 

tailoring newer therapeutic strategies. Further, as we 

learn to explore the space of high-dimensional 

interactions, we may learn that numerous distinct 

subtypes exist within current classifications, based on 

linear and low-dimensional models.  

In summary, we developed a systematic workflow that 

incorporates biomarker classifier and our Pattern 

Discovery Engine for accurate biomarker prediction and 

for the discovery of novel gene interactions in search for 

personalized strategies for combating breast cancer. 

Higher-order interactions were identified and validated 

based on published literature. Our methods provide 

novel insights into gene interaction patterns in breast 

cancer and deliver candidates for further study. The 

proposed workflow can be broadly applied to other 

forms of cancers, and provides a unique view of the 

genomic landscape of disease states. 
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