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Abstract 
 

The trillions of microbes living in our large intestine — the gut 

microbiome — play a profound role in human health and disease 

[1]. While much has been done to explore its diversity, a full 

understanding of how the dynamical evolution of the microbiome 

ecology influences healthy and disease states is only beginning to 

be understood [2]. 

 

In this article, we start by reviewing previous research results, [3] 

examining the gut microbiome taxonomic differences between 

healthy people and of those suffering from the three subtypes of 

the autoimmune Inflammatory Bowel Disease (IBD): Ileal Crohn's, 

Colonic Crohn's, and Ulcerative Colitis [6]. This study was recently 

expanded to understand the functional differences by using the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) [4] protein 

families in the gut microbiome of the samples. Each of the entries 

in the KEGG database describes an orthologous protein family, 

which have specific biological functions. In the study relative 

abundances of 10,192 KEGG protein families were computed from 

the sequencing of the human stool samples. Using traditional 

machine learning techniques, it was shown [5] that a subset of the 

KEGG protein families can distinguish between healthy and the IBD 

states. 

 

In this paper, we describe the results obtained with the Pattern 

Computer proprietary algorithms, tools, and techniques, using an 

approach without prior assumptions on this large dataset of 62 

human microbiome samples, each with the relative abundance of 

the ~10,000 KEGG protein families. We identified 39 KEGG protein 

families that were significant in differentiating the disease states 

from each other and from healthy states, with 9 of the KEGG 

protein families (out of ~10,000 total) being most associated with a 

dynamic path from disease to health in the human-gut microbiome. 

With the Pattern Computer approach, we reduced the size of the 

dataset to be analyzed by three orders of magnitude. The 

biochemical pathways, that 6 out of the 9 KEGG protein families 

are associated with, suggest a hypothesis for further study: 

Inflammatory bowel disease (IBD), like other inflammatory 

diseases, may be associated with abnormal oxidative 

phosphorylation or oxidative stress. 

 

Key Insights 

 

• Some Inflamatory bowel disease 

(IBD) may be associated with 

abnormal oxidative 

phosphorylation or oxidative 

stress. 

• Identified a dynamic path from 

disease to health states In human 

gut microbiome. 

 

Keywords 

 

human gut microbiome, Inflamatory 

bowel disease (IBD), KEGG, 

machine learning, t-SNE, principal 

component analysis 

 

 

 

 

“The crucial first 
step to data 
analytics is 

subspace selection. 
If you get to the 
right subspace, 

everything else is 
likely to be easier.”  
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Computing the Data Set 

Using techniques outlined in [3], we obtained the deep metagenomic sequencing (50-200 million Illumina 

short reads per sample) of 34 different healthy patients (a subset of the NIH Human Microbiome Program) 

and of 28 samples from patients with the three classes [6] of IBD: Ileal Crohn's (ICD), Colonic Crohn's (CCD), 

and Ulcerative Colitis (UC), listed in Table 1. In the CCD case, there are 7-time samples over a year and a 

half from one individual. In the ICD, there are 5 individuals, each with 3 samples collected at six-month 

intervals. In UC, there are 2 individuals, one with a single sample and the other patient with 5 samples. For 

the patient with 5 samples, 3 of them are from luminal aspirate and 2 from mucosal biopsy. The 3 are 

uneven in time with the first two separated by two weeks and the third 4 weeks after the second sample.   

 

Table 1: Cohort sample distributions. 

 

COHORT ABBREVIATION NUMBER OF 
SAMPLES 

Healthy subjects HE 34 

Ulcerative colitis UC 6 

Ileal Crohn’s disease ICD 15 

Colonic Crohn’s disease CCD 7 

 Total samples: 62 

 

The 6.4 billion Illumina short reads from the healthy and IBD samples were converted to relative 

abundances for the taxonomy and the KEGG protein families, by a software system developed by Weizhong 

Li (Figure 1 reproduced from [3]), utilizing the San Diego Supercomputer Center’s Gordon supercomputer, 

consuming around 180,000 core-hours or ~25 CPU-Years [3]. 

 

 

Figure 1: Read-based and assembly-based workflows for Illumina metagenomic data [Figure from reference 3]. 
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Our hypothesis, based on previous published research [7], is that there would be a large difference in the 

microbiome ecology in these four cases. When we look at the relative abundances of the microbial phyla 

across the 62 samples (Figure 2), we see that while there is a variation within the disease cohort, the four 

classes appear to be quite distinct in their ecological composition. The healthy patients are 90+% a mixture 

of Bacteroidetes and Firmicutes. In contrast, the ICD are a mixture of Actinobacteria and Firmicutes, while 

in UC, Proteobacteria is a major admixture with Bacteroidetes and Firmicutes. The CCD samples seem to 

be a time varying combination of Firmicutes, Proteobacteria, Actinobacteria, and Euryarchaeota, with 

Bacteroidetes suppressed in all but one sample. 

 

Figure 2: Relative abundance for the samples at phylum level 

This observation is verified when we carried out a Principal Component Analysis (PCA) on the species 

taxonomic relative abundances in the samples (Figure 4a in [5]), with rough separation observed in the 

clustering of the four states.  

 

If one looks (Figure 3) at the evolution of the CCD time-series samples using the major microbiome 

families, the 6th sample seems to move to an ecology more like healthy, in that the family Bacteroidaceae 

is much larger in CCD6 than in any of the other CCD time points. 

 

 

Figure 3: Evolution of the CCD samples microbial ecology compared to the average of the healthy samples (leftmost bar). Stacked 

bars show relative abundance of microbial families greater than 1% in the samples. The bars add to 100% when all families are 

included. 
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From Taxonomy to Function 

The question arises as to whether function measured by gut microbiome gene relative abundance might 

reveal the patterns of disease difference even better than taxonomy. It is well known that in healthy 

people, even though there is a large variation in the relative abundance of the Bacteroidetes to Firmicutes 

Phyla across subjects in the gut microbiome, the variation in function across healthy individuals is quite 

low (Figure 2 (stool) in [8]).  

 

When the taxonomy of our samples in Table 1 were first computed, it was reported [3] that the relative 

abundance of the protein families in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database [4] 

was also computed. When we carry out a PCA of the relative abundance of the 10,192 KEGG protein 

families (Figure 4), we see almost perfect separation of the clusters, much better than was seen in the PCA 

derived from the relative abundance of the taxonomic species (Figure 4a in [5]). 

Figure 4: In this PCA of the relative abundance of the 10,192 KEGG protein families across samples, colored by the different 

subclasses, we see near perfect separation between the different cohorts. 

Furthermore, it was discovered [5] (Figure 5) that by using PCI's proprietary machine learning algorithm, 

there were many KEGG protein families with 1 to 2 orders of magnitude difference in relative abundance 

between healthy and IBD samples. 

ICD 
 

HE 
 

CCD 
 

UC 

Inspired by a quote by E.O. Wilson
*
:  

 

"The crucial first step to data analytics is subspace selection. If you get to the 

right subspace, everything else is likely to be easier." 

 

* "The crucial first step to survival in all organisms is habitat selection. If you get to the right place, everything else is likely to be easier” – 

E.O. Wilson 
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Figure 5: Distribution of the relative abundance of KEGG protein families selected by from use of PCI's machine learning algorithm 

that discriminate between healthy and disease states. The horizontal axis is the relative abundance values of the KEGG protein 

families on a logarithmic scale for each of the samples. 

In a follow-up paper [9] several statistical tools, including linear regression and topological data analysis 

(TDA) have been used to show that the three disease subtypes have KEGG protein families that provide 

clear separation. 

 
The Pattern Computer Approach 
 

Pattern Computer uses a proprietary system to discover new patterns in complex, high-dimensional data 

sets. Without any prior knowledge, what can we automatically learn from high-dimensional data? If the 

variables are uncorrelated, then the system is not high-dimensional; instead, it should be viewed as a 

collection of unrelated univariate systems. If correlations exist, then some common cause or causes must 

be responsible for generating them. Pattern Computer uses a model-free, mathematically principled 

approach without prior assumptions to find answers to these questions. We look for latent factors so that, 

conditioned on these factors, the correlations in the data are minimized — as measured by multivariate 

mutual information. We look for the simplest explanation that accounts for the most correlations in the 

data. We illustrate our approach, methodology, and tools to learn more about what a healthy versus 

unhealthy microbiome states look like and understand more behind the dynamics of the state transitions 

between healthy and disease states. 

 

The microbiome team made the dataset described above available to the Pattern Computer team to see 

what additional insights might be generated by use of the Pattern Computing approach. (Note all analysis is 

done on the log10 transform of the original KEGG data). Using the Pattern Computer toolset, we identified a 

subspace of 39 out of the 10,192 KEGGS in the original dataset. This subspace captures significant 

dynamical structure contained within the full data space. To visualize these patterns, we first analyzed the 

39-dimensional subspace by computing the cross-correlation between the patients in this subspace. The 

ICD 
 

HE 
 

CCD 
 

UC 
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results from using the Spearman cross-correlation analysis are shown in Figure 6. The clinical subgroups can 

be clustered from the cross-correlation matrix; clusters denoted by the black boxes. Notice several 

individuals, yellow boxes, strongly cross correlate with both their own subgroup and with the cluster of 

healthy patients.  

Figure 6:  Cross-correlation plot using Spearman correlations of the patients in the 39-dimensional subspace identified by Pattern 

Computer. The patients are in order with CCD 1-7 (Red), ICD 8-22 (Green), UC 23-28 (Blue), and Healthy 29-62 (Black). 

We then utilized two separate embedding techniques to visualize the reduced subspace.  Both t-Distributed 

Stochastic Neighbor Embedding (t-SNE) and principal component analysis were used to embed the 39-

dimensional subspace into 3 dimensions for visualization. Because the two methods returned markedly 

similar embeddings, we refer only to the PCA embedding shown in Figure 7. 

 

Figure 7:  PCA embedding from the 39-dimensional subspace for visualization. The patient clusters: CCD (red), ICD (green), UC 
(blue), and Healthy (black).  
 

The PCA embedding encapsulates the full structure of the distribution of the data in the 39-dimensional 

subspace, revealing four sub-clusters representative of the four clinical groups along its three dimensions. 

In the prior paper (Figure 4a in [5]) using species PCA did not lead to a clear separation between UC 

(Ulcerative colitis) and HE (healthy) groups. Note that our method verifies the cohort separation that was 

observed using the KEGG protein families in [5]. It also very interestingly shows a set of individuals that 
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appear to bridge between the cluster of healthy individuals and a super cluster defining the disease states 

comprised of the CCD and ICD clinical subgroups as depicted in Figure 8.  The spatial distribution of 

clusters highlights key samples which identify with more than one clinical cluster.  In other words, the 

placement of patient samples can denote their similarity to one another. 

 

The results are consistent with the Spearman cross-correlation analysis whereby we see a few samples, 

strongly cross correlating between the multiple clusters (see Figure 6).   Some healthy individuals show 

certain connections to the disease states as some are clustered closer to the UC or CD subgroups.  At the 

same time, only one of the CCD data points clearly identifies as close to healthy as its own subgroup. 

 

 

Figure 8: Patients in Yellow identified in the PCA analysis which form a “bridge” between the healthy and disease states. 

Figure 9 shows the dynamic transitions of the CCD patient over their 7-time states through the PCA 

embedding. In the context of the PCA embedding, and assuming we can trade space for time, (in other 

words, the space in which the data points live describe the dynamics of the individual as they transitioned 

through time towards different degrees of health), we seek several hypotheses explaining the individuals 

forming the bridge linking the healthy and disease states as shown in Figure 8. 

Figure 9: Orbit of the CCD data time-series with respect to the 39-dimensional KEGG subspace. 

In Figure 9, CCD6 stands out because it strongly cross correlates between both the CCD cluster and the HE 

cluster, as indicated by one of the two yellow boxes, through the Spearman cross correlation analysis 
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between individuals, Figure 6, but it still has correlation to its own subgroup. This could be interpreted 

that CCD6 indicates an in-between disease and healthy state, thus marking part of the transition from 

healthy to the disease state. Note that this is what one sees in the taxonomic microbial ecology evolution 

in Figure 3. Identifying 12 patients forming the bridge in Figure 8, we analyzed the spatial distribution of 

the 39 KEGG protein families individually.  

 

Out of the original 39 KEGGS, nine KEGG protein families showed clear indication of spatial structure not 

previously investigated: K00330, K00348, K00351, K00434, K00604, K00607, K00609, K00633, and K03671. 

Prior work proposed a hypothesis that ignored the dynamics of this system in favor of a diagnostic 

measurement which separated the diseased from the healthy. While these KEGG protein families do show 

distinct differences in the averages in each subgroup, as validated using the Kolmogorov-Smirnov test, the 

most prominent and interesting property is that they show a “continuous” change moving from the disease 

to healthy subgroups within the PCA subspace. To identify this change, we analyzed the distribution of 

each KEGG relative to a one-dimensional slice through the PCA embedding. This allowed us to identify the 

KEGGs showing a “continuous” change moving from the healthy to disease state. For example, in Figure 10 

for K03671, we compared its distribution along the first component of the PCA embedding where we find a 

significant linear correlation, r2 = 0.82. We selected the KEGGs with most significant (perhaps non-linear) 

gradients within the space. These indicated those KEGG protein families that fluctuate across a spectrum 

of values which seem to span the complex dynamics that lead to an individual’s current condition. 

 

Figure 10:  a) Visualization of the spatial distribution of K03671 values across patients in the 39-dimensional subspace, b) Spatial 

distribution of K03671 with respect to the first coordinate of the PCA analysis. (Recall all analysis is done on the log10 transform of 

the original KEGG data). 

Our preliminary hypothesize was that nine out of the original 10,192 KEGG protein families have significant 

dynamical patterns and structure which seem to indicate the transition from disease states to health within 

IBD. Further research into these nine KEGG protein families revealed that six of the nine KEGG protein 

families identified are related to oxidative phosphorylation. See Figure 11 for three of these six KEGG 

protein families. Specifically, K03671 (Figure 11a) and K00640 (Figure 11b) are associated with Combined 

Oxidative Phosphorylation Deficiency disease (COXPD). K00351 (Figure 11c) is an oxidoreductase enzyme. In 

contrast, Figure 12 shows an example of two KEGGs drawn at random that clearly do not show spatial 

structure with respect to their distribution amongst the patients. 

 

With these analyses, we believe that IBD, like other inflammatory diseases, may be associated with 

b)        a)         
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abnormal oxidative phosphorylation or oxidative stress [10]. Oxidative phosphorylation produces reactive 

oxygen species (ROS) in both prokaryotes and in the mitochondria of eukaryotes. Microbial ROS production 

affects the innate immune response, influencing the integrity of the intestinal epithelial barrier (2) which 

is compromised in IBD. Future research is required to more definitively follow up this finding. 

 

Figure 11:  Spatial distribution of KEGG values across patients in the 39-dimensional subspace a) K03671, b) K0351 and c) K00604. 

 

 

Figure 12:  In contrast to Figure 11, a) KEGG whose distribution has no coherent spatial structure across the patients, b) KEGG 

with a near constant spatial distribution. 

 

Presently, the number of features measured within many biological datasets (omics data, in particular) and 

thus, the potential combinations of subspaces to be explored are daunting. If science is to progress, its 

ability to create new hypotheses based upon data insights is essential. Thus, the scientific community 

requires a new generation of data mining tools that can find intrinsic patterns within subspaces of a 

dataset worth investigating in an automated fashion. In this white paper, PCI’s tools identified a subspace 

of 39 KEGG protein families out of 10,192, or one single 39-dimensional subspace out of approximately 

10110 combinations of 39-dimensional subspace in under a few hours of run time on our machines, capturing 

significant intrinsic structure allowing for new hypotheses about IBD to be formulated.  

a) b) 

a) b) c) 
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