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A Machine Learning Approach to 

Pattern Discovery in 
Oncogenomics 
 
 

Abstract 

Owing to the advances in high-throughput technologies, the past decades have 

witnessed unprecedented growth in biological and medical data, such as genetic 

and epigenetic data, protein structures, as well as medical images. This data 

deluge requires computational tools that can effectively and efficiently 

transform it into valuable knowledge to allow for better understanding of 

human health and disease. In this regard, machine learning-based algorithmic 

frameworks show immense potential in extracting relevant features and to 

discover patterns from complex biomedical data that may provide clues to the 

underlying biological processes. In this paper, we present the development and 

validation of a novel algorithm for pattern discovery and its application in 

discovering biologically relevant genes and gene associations in unlabeled, and 

sparse genomic datasets. The strength of our method is not only in embracing 

the complexity of genetic architecture to identify distinct patterns embedded in 

a noisy background in a purely data-driven way but also, the ease with which it 

can be integrated into a comprehensive and flexible framework for data mining 

and actionable knowledge discovery that goes beyond human genetics and 

genomics.  
(Video link: https://www.youtube.com/watch?v=LCdnCG8eUk4&feature=youtu.be) 

 

Introduction 

Rapid innovation and technological advances have accelerated the mechanistic 

understanding of genome biology to an amazing level. Mapping genotype to 

phenotype, classifying different types of mutations, and predicting regulatory 

functional effects are all areas where exploiting the massive amount of genomic 

data obtained from large number of individuals can deliver new actionable 

insights. However, the extraordinary complexity and volume of information 

stored in human DNA presents a major hurdle to the “complete understanding” 

of genome with all its functions and interactions. Additionally, working with 

large volumes of heterogeneous data is challenging when conventional data-

processing approaches are used. Novel and innovative methods are highly 

desirable in genome science to enhance our biological understanding of health 

and disease. 

 

Application of machine learning, to genomics and biomedicine has major 

potential to revolutionize the state-of-the-art in genome analysis. Applying a 

targeted pattern discovery platform to systematically extract novel 

representations or features from input data, promises to leverage large datasets 

to uncover previously unknown structure residing within them, and enables 

accurate predictive outputs from the data. Implementation of various machine 

learning techniques has demonstrated breakthrough gains over conventional 

methods across a variety of domains such as medical imaging,1-3 speech 
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recognition,4 computational chemistry,5 high-energy physics6 and robotics including self-driving cars,7 and is particularly 

useful when large amounts of data are available. Since biology and medicine are data-intensive disciplines, novel 

algorithmic approaches are particularly well-suited to solve the problems of these fields. However, transferring the 

successes of these techniques from other domains into genomics is not as straight-forward given that biological data does 

not readily conform to the deterministic assumptions underlying many mainstream implementations. Thus, as these 

complex datasets present new opportunities, they also pose new challenges that need to be addressed.  

 

Usually, high-dimensional data from biological experiments involving genomics or other high-throughput assays yield 

large and multifaceted datasets and are often represented as a data matrix.  In these data matrices, each row corresponds 

to a gene or a feature, and each column corresponds to a sample or a patient. By analyzing these matrices 

computationally, it is possible to learn characteristic information within samples and to identify key features between 

samples to examine essential biological functions. However, the presence of high levels of noise and systematic biases in 

high-throughput experiments presents considerable challenge in genomic data analysis. Another fundamental challenge 

in biomedical data is their underlying representations which is often sparse. For instance, of an estimated 20,000-25,000 

human protein-coding genes, alterations (or mutations) in only one gene  can cause certain genetic diseases or disorders; 

a gene network is sparse as a gene either directly regulates or is regulated by a small number of genes relative to the total 

number of genes in the network; many biological signals are sparse or compressible as they have ‘concise representations’ 

when expressed in a transformed domain or basis. Furthermore, labeled data is often scarce and expensive to procure 

primarily due to the lack of knowledge of genetic process that makes discernment of an event difficult. Even when the 

data isn’t sparse and/or when clinical labels are obtainable, the best any standard machine learning algorithms, such as 

decision trees, gradient boosting machines, or neural networks, can do, is to build classifiers, or allow for importance 

sampling, or clustering. However, doing so wouldn't be of much use if the aim is to obtain actionable information. For 

that, one needs to find clear signals and quantify the inter-relationships of these genes i.e., how one gene is associating 

with another.  

 

Complex diseases such as cancers, are caused by multiple interacting pathogenic genes. and so, the traditional ‘one target, 

one drug’ therapeutic mode has limited therapeutic potential. Recent studies have shown that targeting multiple disease-

associated genes has greater therapeutic potential than single-target therapies,8 and may not only bring synergistic or 

additive effects but also, reduced toxicity and delayed resistance for effective disease control. Inhibitors targeting synthetic 

lethal partners of genes mutated in tumors are already successfully utilized for effective and specific treatment in the 

clinic.9,10 The search-space for possible signatures of interactions, however, is intractably large, and computational 

methods that limit the experimental effort of validating the interactions for therapy are highly desirable.  

 

In this work, we address the very challenging yet fundamentally important problem of finding robust gene representations 

in sparse and unlabeled data. We have applied this strategy to the very sparse mutational data from lung cancer. The aim 

was to learn the standardized representations of all impacted genes that may allow the discovery of rare or non-obvious 

mutational patterns that can potentially illuminate new options for developing targeted therapies against cancer.  

 

Method  

In this section, we describe the general framework of our strategy to identify biologically and clinically relevant gene 

associations, outlined in Figure 1.  

 

 
Figure 1. An outline of our approach to identify biologically relevant mutational patterns. 
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Accordingly, we developed a series of machine learning algorithms that among other things allows for mapping the input 

data to a very high-dimensional vector space to explore its topology, all as a means of locating embedding spaces for the 

standardized representations of mutated genes. We applied this tool to study the associations between the very sparse 

somatic mutation data obtained from 586 lung adenocarcinoma patients that was gathered by The Cancer Genome Atlas 

(TCGA). As a first step, a dimension reduction approach is applied to identify the most relevant features (i.e. genes) in the 

data. In general, this framework is compatible with multiple data sources including gene expression, mutation, methylation 

data and the criteria for the selection of genes varies based on the data considered (for e.g. frequency in mutational data, 

variability in gene expression data). This filtered data is then processed using our tool that finds gene representations as 

embeddings that can be visualized by constructing a 3D network graph to displays association between different genes; 

Figure 2. The resulting gene associations are then parsed through our contextual engine to identify, prioritize or validate 

clinically actionable gene associations that can be used to generate testable hypotheses and the final hand-selected 

candidates can be submitted for biological evaluation. 

 

 
 

Figure 2. The figure shows a specific region of the three-dimensional gene association network graph. Each node in the 

network represents a mutated gene. The size of the node (or circle) represents the frequency of occurrence of that 

particular gene in lung cancer. Larger nodes, therefore, represent the most important genes. Different colors of the nodes 

represent different properties - Red: genes with an existing, approved drug for lung cancer treatment; Yellow: genes with 

an approved drug for other cancer treatments; Green: all other mutated genes in lung cancer. Please note not every 

gene is connected to every other gene, the connections are very specific. Finally, the connections in Magenta are stronger 

than the grey ones. 

 

So, how did we know that the edges we drew were meaningful and not randomly constructed? To answer this question, 

we performed the following four tests: 

(a) It stands to reason that the genes from the same family usually have similar functions and, therefore, should have 

stronger associations. To test this, we made a separate network graph and highlighted the genes belonging to one 

special family – UGT – that provides instructions for making particular enzymes. In the network shown in Figure 3a, we 

are showing all the members of UGT family genes shown in orange in Fig. 3a, and the rest of all the genes in green. It 

is worth noting that there are so many interconnections between the family members that it stands out. This is a 

complex network, containing thousands of genes and connections, yet we easily identified this family of genes, 

illustrating that even in the most complex networks, our method is able to find strong connections between 

functionally similar genes.  

(b) While combining genomic datasets from different sources, the problem of gene aliases is quite common. When we 

apply our tool to integrated datasets, we find such genes are strongly associated with each other. As an example, 

Figure 3b shows strong connection between genes and their aliases (represented in purple). This is remarkable since 

no information regarding these aliases was provided in the dataset or in advance to the tool. 

(c) Using statistical approaches, one can ascertain frequently co-occurring genes from the data itself. As expected, our  

 

  “Extracting hidden patterns in biological and medical data is a highly non-trivial task.” 
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tool easily identified these pairs as shown in Figure 3c. 

(d) There are some genes that are functionally similar and do not co-occur since only one of them is required to do the 

task. While co-occurrence is easily discernible, identifying functionally similar but mutually-exclusive pairs is not as 

straight-forward. Figure 3d shows that our tool can identified these mutually exclusive pairs that are connected by the 

cyan lines.  

 

Figure 3a. A representation of genes that belong to the same family cluster together in the generated network graph. All 

the members of UGT family genes in orange, and the rest of all the genes in green. b. Network graph showing connected 

aliases in purple color. c. A graphical representations of co-occurring gene pairs connected by orange lines. d. A 

representation of functionally similar but mutually-exclusive gene pairs connected by the cyan lines.  

Upon successful validation of our method, we can say with confidence that our standardized representation of genomic 

data advances the state-of-the-art.  

 

Biomedical Applications 

Traditional drug development is a long, tedious and expensive process, with an estimated cost of bringing a drug to 

market now exceeding $2.5 billion and taking between 10-15 years.  Reducing this time frame, decreasing costs and 

improving success rates with more targeted approaches to discovery and streamlining process workflows in 

pharmaceutical R&D could significantly improve the profitability of these ventures. Accordingly, our approach can greatly 

speed up the traditional drug discovery process. Here are some specific application scenarios: 

Identification of Novel Target(s) 

 

Successful drug discovery hinges on choosing the right target or combination of targets with relevance to human disease 

and evidence that modulating them will be beneficial for patients. A vast majority of potential drug candidates fail because 

of poorly understood target-disease associations, pathway-target-drug-disease relationships and perhaps, adverse events 

profiling. Using our proprietary in silico approach to pattern discovery, we can effectively link genes and diseases to 

identify novel therapeutic targets with the potential to considerably decrease attrition rates in the drug discovery pipeline 

by significantly reducing the initial search space. The aim is to provide better evidence behind the role of the targets in 

diseases that might improve success rates and/or allow early termination of implausible drug development programs.  
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Repurposing 

  

Drug repurposing, or drug repositioning, refers to the identification of new indications from existing drugs and the 

application of the newly identified drugs to the treatment of diseases other than the drugs’ intended disease. One 

advantage of drug repositioning is that most of the repositioned drugs have already passed a series of tests, and so have 

lower risk of unexpected toxicity or side effects. With the application of our platform to real-world data, pharmaceutical 

companies can repurpose drugs faster and at lower costs than developing new drugs. This, in turn, may speed up the 

review of such drugs by the Food and Drug Administration (FDA) and, if approved, their integration into patient treatment. 

 

Combination Therapies 

 

One of the major issues with current treatment regimens has been that they ultimately stop working for patients resulting 

in recurrence of the disease. This is due to a phenomenon called drug resistance. This is particularly true for patients 

suffering from complex diseases, such as cancer, that are known to be caused by complex interactions between many 

genes.  One of the solutions to overcome or delay the resistance has been to treat the patients with combinatorial target 

therapy rather than targeting only one gene at a time. However, it is difficult to select and experimentally evaluate 

effective combinations due to the large number of possible combinations. Using our techniques, it is now possible to 

identify the best synergistic gene combinations that can be used to develop more effective drug combination therapies.  
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